
IVXV architecture

Specification

Versioon 1.8.0

01.12.2022

37 lk

Dok IVXV-AR-EN-1.8.0

Contents

Contents . 2

1 Introduction . 4
1.1 IVXV Concept . 4
1.2 IVXV Cryptographic Protocol . 5
1.3 Notation . 5

2 Collector Service . 7
2.1 Microservices . 8

Proxy Service: Function and Technical Interface 8
Choices Service: Function and Technical Interface 10
Verification Service: Function and Technical Interface 10
Voting Service: Function and Technical Interface 11
Storage Service: Function and Technical Interface 11
Identification Service: Function and Technical Interface 11
Signing Service: Function and Technical Interface 12
Application of Collector Service Microservices 12

2.2 External Services and Extendability . 12
Registration Service: Function . 13
Adding Collector Service Extension Modules 14

2.3 Monitoring . 14
Logging . 14
General Statistics . 16
Detailed Statistics . 16

2.4 Administration . 16
Administration Service Components . 17

2.5 Collector Service Statuses . 19
Statuses of the Subservices of the Collector Service 20
Changes in the Collector Service Status 20

3 Applications . 24
3.1 General Principles . 24

Application Configuration . 25
Input Consistency Check . 26

3.2 Key Application . 26
3.3 Processing Application . 28

Full Processing of Electronic Votes . 29
Generating a List of Electronic Voters . 29

3.4 Audit Application . 29

4 Technology Used . 31
4.1 Collector Service Programming Language 31
4.2 Programming Language of Applications 31
4.3 Project Dependencies . 31

IVXV architecture

01.12.2022

1.8.0

2 / 37

5 References . 36

Bibliography . 37

3

CHAPTER

ONE

INTRODUCTION

The online voting information system has been created based on the e-voting frame-
work [ÜK2016] and the technical specification of the public procurement 171780
[TK2016]. This document specifies the architectural solution of IVXV. The online voting
information system consists of offline applications and online components. The infor-
mation system is additionally dependent on external information systems and affects
the components directly used to vote online / verify votes.

The architecture document specifies the IVXV components, their interfaces with each
other as well as external systems, and the protocols implemented by the components.

1.1 IVXV Concept

The general, but comprehensive overview of the technical and organizational side of
the online voting system (IVXV) and its implementation at Estonian state-level elec-
tions is given in the general specification of the e-voting framework [ÜK2016].

IVXV as an information system implements the i-voting protocol based on the envelope
scheme. IVXV works in the pre-voting stage, the voting stage, the processing stage,
and the counting stage, offering options to participate in the online voting process to
the organizer, the counter, the voter, the collector, the processor, the mixer, the auditor,
customer support, the voter list compiler and the editor.

Information system components are the collector service, the processing application,
the key application and the audit application. The voter application, the verification
application and the mixing application are closely linked to the information system.

In its operation, the information system uses external services: the identification ser-
vice, the signing service and the registration service.

4

1.2 IVXV Cryptographic Protocol

To achieve a situation where online voting is safe and verifiable, voting is secret
and correct, and voters are independent, the cryptographic protocol of online voting
[HMVW16] is strict. The protocol gives an essential and adequate overview of the
structure and security aspects of IVXV. The components of IVXV implement the sub-
parts of the cryptographic protocol.

The IVXV cryptographic protocol is also specified using the notation that allows formal
verification with the protocol security aspects system [ProVerif].

1.3 Notation

In this document, we use UML schemas to illustrate the draft architectural solution,
where we differentiate between the following aspects of features – actors, interfaces,
components – with colors and <<>> markings:

• Marking <<IVXV>> (yellow) – the interface or component of the information sys-
tem is defined/implemented in the course of work done for a specific procurement

• Marking <<External>> (red) – in implementing some functionality, the informa-
tion system depends on the component of a third party or an existing interface,
redefining which requires efforts by third parties

• Marking <<NEC>> (brown) – similar to the previous one, but NEC is the owner of
the interface/component

• Marking <<Not defined>> (black) – an interface important to the information
system has not been defined

5

Fig. 1.1. Example schema

6

CHAPTER

TWO

COLLECTOR SERVICE

Based on the general specification [ÜK2016], the collector service is a central ele-
ment in the system, run by the collector. The service helps the voter compile an i-vote
and registers it in the ballot box before storing it. The collector service uses external
services (identification, signing, registering). The collector service has other adminis-
trators apart from the collector (organizer, customer support), for whom the collector
service has separate administration interfaces.

The collector service works online, and at least the interfaces directed towards the
voter and verification applications are open to the internet. Thus, the collector service
handles requests that potentially originate from an untrustworthy source. Due to the
security requirement of the software, and the requirements of high availability, scala-
bility, multitier implementation and extendability, the collector service itself is divided
into microservices providing one specific service that can be implemented flexibly.

All components of the collector service are programmed in Go1. The Go programming
language has:

• Static typing, which allows finding type errors before the program is launched

• Automatic memory management, which avoids security risks arising from poor
memory management

• Compiler with an open source code and

• Concurrent programming features allowing (inherent) parallelism in multicore
systems

Generally, JSON is used as the data transmission format of the collector service, ex-
cept in situations where external circumstances require the use of another data format
– the BDOC format, for example, is based on XML.

The collector service supports Riigikogu elections, local government council elections,
European Parliament elections and referendums.

The components of the collector service consider the use of virtualization technologies,
and the collector service can be implemented on both one virtual hardware instance
as well as by microservices on different instances. Collector service components can

1 https://golang.org

7

https://golang.org

be implemented in the Ubuntu 20.04 LTS (Focal Fossa) operation system 64-bit archi-
tecture.

Data retention has been implemented using the key-value database (etcd). For test
purposes, data has also been stored in the file system and memory, but it is not rec-
ommended to use these in the product environment. The collector service also has an
interface for adding new storage protocols. The final decision regarding the solution to
be used is made by the collector service administrators when configuring the service.

2.1 Microservices

The collector service is divided into main services and support services. The main ser-
vices – proxy service, choices service, voting service, verification service and storage
service – are limited to one election in the interests of the simplicity of the architecture,
but the microservices of several elections can go on one hardware, in one operation
system. Additional support services can be used for the collector service – the identifi-
cation service to identify the voter’s person, and the signature service to make it easier
for the voter application to sign a vote.

The services can be implemented separately as well as together in various configu-
rations, which makes multitier architecture possible. Depending on the function, it is
practical to keep proxy and storage services separate from the others.

The services use TLS and all connections are authenticated on both sides. The appli-
cation layer uses the JSON-RPC (protocol).

All services create an action log that is kept both locally and logged using the rsyslog
interface.

Proxy Service: Function and Technical Interface

The main function of the proxy service is to offer one entry point (port 443) to the voter
application and the verification application. The proxy service is a dispatch service
between other components that allows implementing the collector service internally as
microservices, while having only one entry point to the system. In addition, in case of
double implementation, it can act as a load balancer.

The proxy service does not terminate the TLS connection, but uses the TLS Server
Name Indication (SNI) extension to identify the target. Clients put an SNI extension in
the TLS ClientHello message, where they use open text to determine the service
with which they want to communicate: the proxy service sees that, contacts the entity
providing the relevant service, and starts sending messages between the client and
the service. The proxy service does NOT terminate TLS and cannot see the content
of the messages. The proxy service has data on the locations of all other services
(aadress:port) and the service sends messages between all parties.

The proxy service is a status-free component, which can be scaled horizontally.

8

Fig. 2.2. The collector service divided into microservices

9

Application of the Proxy Service

The proxy service is implemented using the free software HAProxy server, which is
a common load balancer and proxy. Since the proxy service is the first access point
for connections coming from the public internet, it is sensible to use software that has
proven to be reliable.

Although HAProxy is often used in HTTP, where it analyses traffic, in the role of the
proxy service it operates in the TCP mode and cannot see inside the encrypted TLS
channel it proxies.

IVXV settings are used to generate the HAProxy configuration file, which contains the
locations of other services, and the task of relaying connections is left to the latter.
In addition, HAProxy can also be configured to limit the connection frequencies on
the basis of the source address or another denominator. However, this is the system
administrator’s task.

Even though HAProxy is able to function as a load balancer, it can be implemented
behind other, potentially hardware-type load balancers, where it performs only the
task of SNI-based relaying.

The HAProxy source code is public under GPL v2 and version 1.6.3 is packaged in the
official storage of Ubuntu 16.04 (see Technology Used).

Choices Service: Function and Technical Interface

The main function of the choices service is to send lists of choices to the voter appli-
cation. Information on the identified voter reaches the choices service and the choices
service issues the list of choices that corresponds to the voter’s district from the stor-
age service to the voter application.

The choices service is a status-free component that can be scaled horizontally.

Verification Service: Function and Technical Interface

The main function of the verification service is to process verification requests and
issue the vote to be verified from the storage service to the verification application.

The verification service is a status-free component that can be scaled horizontally.

10

Voting Service: Function and Technical Interface

The main function of the voting service is to process voting requests. The voting
service verifies the incoming vote, registers it in the registering service and stores it in
the storage service.

The voting service is a status-free component that can be scaled horizontally.

Storage Service: Function and Technical Interface

The main function of the storage service is to execute the long-term retention of
choices, voter lists and votes.

Storage technology that allows for distributed data retention has to be used for the
horizontal scaling of the storage service.

Application of the Storage Service

The storage service is not aware of the IVXV protocol or the specifics of the data to
be retained; it is a general-use key-value database for storing binary data. All the
knowledge on the structure of the data to be retained and the hierarchy of keys is in
other services that use the storage service and act as “smart” clients.

This approach allows using any common key-value database as the storage service
without much trouble: the only tasks are to convert IVXV settings into a format suitable
for the database and to launch the service. The database software only has to allow
retention and reading based on the key, listing the keys by a prefix, and an automatic
(compare-and-swap) operation.

The storage service is an important determiner of the working speed of the collector
service; that is why the hardware providing that service affects the performance of the
entire system and should be dimensioned according to the database used.

At the moment, the only storage service application that is intended as a product uses
the distributed key-value database etcd. The recommendations2 of the authors of the
etcd hardware should be followed.

Identification Service: Function and Technical Interface

The main function of the identification service is to identify the voter’s identity. The
identification service is necessary when the user uses mobile ID authentication, for
example.

2 https://coreos.com/etcd/docs/latest/op-guide/hardware.html

11

https://coreos.com/etcd/docs/latest/op-guide/hardware.html

Signing Service: Function and Technical Interface

The function of the signing service is to support the voter application in signing a vote.
The signing service is necessary when the user uses mobile ID to sign, for example.

Mobile ID Support Service Execution

The composition of IVXV includes the mobile ID support service, which acts as both
the identification service and signing service for mobile ID. The voter application sends
IVXV requests to the mobile ID support service, which converts them into mobile ID
requests and sends them to the mobile ID service provider.

In case of successful mobile ID identification, the support service issues to the voter
application a ticket that can be used to confirm the voter’s identity to other services. A
user can only vote once with each ticket.

In case of signing, the voter application only sends the hash of the vote to be signed to
the mobile ID support service, and uses the signature received in return in the same
way as a signature created with an ID card.

The mobile ID support service does contain a status on unfinished identification ses-
sions, but otherwise, it is a status-free component. Thanks to this, the mobile ID
support service can be scaled horizontally, provided that all requests from one identi-
fication session are sent to the same entity.

Application of Collector Service Microservices

The collector service microservices are minimally dependent on external packages.
The necessary dependencies:

• SSH server to conduct administrative activities (the administrative service uses
it to manage microservices)

• rsyslog service to collect logs to the log collection service

The collector service microservices are packaged in the .deb format, and can also be
implemented as docker-type containers.

2.2 External Services and Extendability

The collector service microservices use extension modules to execute various mecha-
nisms to identify the voter and verify and edit digital signatures, incl. to register a vote.
Extension modules can, in order to enable the execution, use external services. In the
interests of the extendability of microservices, Go API has been defined that can be
used to implement additional modules as well. At the moment, the following modules
are implemented:

• Authentication with a TLS certificate (ID card)

12

Fig. 2.3. Collector service extension modules and external services

• Authentication with an identification service ticket (mobile ID)
• BDOC verification
• Certificate status service OCSP
• Timestamp service RFC 3161
• Registration service OCSP
• Registration service RFC 3161

The registration service takes center stage in the IVXV cryptographic protocol, as it
also takes part in the long-term retention of votes.

Registration Service: Function

The main function of the registration service is to accept signed registration requests
from the voting service, confirm them with its own signed response, and store them at
least until the end of the voting period for auditing at a later stage.

When resolving potential differences that arise during auditing, it is important that

• The registration service is able to prove that each confirmation it issued was
preceded by a registration request from the storage service

• The storage service is able to prove that there is a registration service confirma-
tion for every vote it has retained

Sufficient protocol to achieve such a level of verification occurs when both parties have
a key pair for signing, the requests and responses are signed, and each party keeps
a register of the messages of the other party. Such a protocol can be implemented,
for example, in case of an OCSP-based registration service. However, there may be
cases where it is impossible to sign registration requests with standard means – RFC
3161-based registration – and then the proof necessary for the registration service has
to be provided with other organizational and technical means.

13

At the moment, the registration service has two different implementations:

• The OCSP requires the use of the OCSP-based timestamping service imple-
mented in Estonia, where the nonce of the signed OCSP request is the hash
of the vote issued by the voting service. The request is signed using standard
OCSP means

• The RFC 3161 component, in case of which, as a non-standard solution, the
nonce of the timestamp request is the hash of the vote signed by the voting
service

Adding Collector Service Extension Modules

The API of the collector service defines six types of extension modules:

• Personal identification (Go package ivxv.ee/auth, e.g. tls),
• Deriving the voter identifier from the identified person certificate (Go package
ivxv.ee/identity, e.g. serialnumber),

• Deriving the voter’s age from the identifier (Go package ivxv.ee/age, e.g.
estpic),

• Signed container verification (Go package ivxv.ee/container, e.g. bdoc),
• Signature verification (Go package ivxv.ee/q11n, e.g. tspreg) and
• Data retention protocol (Go package ivxv.ee/storage, e.g. etcd).

To add a new module, a new module identifier has to be added to the module package,
as well as a module execution sub-package. At the initial loading of the sub-package,
the Register function of the module package has to be invoked to register the mod-
ule.

To use a new module, its identifier has to be added to the settings under the relevant
module type with the sub-module setting. The extension module is given a configura-
tion block referred to by its identifier, and the block will be processed further within the
module.

The module packages and the interfaces required from their modules are specified in
more detail in the document IVXV API. In addition, there is at least one application
per module that can be used as an example.

2.3 Monitoring

Logging

The log generated by each microservice is defined systematically based on the pro-
tocol specification and the status diagram of service provision. At a minimum, the
following is logged:

• The fact of receiving each request and the start of processing

14

Fig. 2.4. Monitoring solution

• Giving processing over to an external component

• The return of processing to the components

• End of processing the request and the result

• Going through additional important stages in the process status model

The following principles are adhered to when logging:

• The rsyslog service is used for logging; it only takes a millisecond to register the
moment when a log message is written

• Once a session begins, the system generates a unique identifier that the client
application uses for its requests when addressing the central system

• All log entries under one session contain the same session identifier

• The log entry can be uniquely identified

• For each logged message, the unique identifier allows identifying the location
where the message was created in the monitored system

15

• The log entry is in the JSON schema format; for automatic monitoring, machine-
readability is primary and human-readability secondary

• The information to be logged is sanitized (urlencode), and given a length limit
(total length and by parameters)

• Information coming from outside the system perimeter is only logged in a sani-
tized form, only in the prescribed length

Since logging is done via rsyslog, it is possible to use the Guardtime module to ensure
the integrity of logs.

General Statistics

The statistics web interface is used to monitor the following statistics:

• The number of successfully collected votes / number of voters

• Voters by gender, age group, operation system and means of authentication

• Number of successfully verified votes/voters

• Repeat votes

• Voters by country based on their IP addresses

Detailed Statistics

Detailed statistics are aggregated based on logs using the SCCEIV log analyzer, which
analyses the action log of applications in relation to the predefined profile, and allows
performing session/error code-based analysis.

Detailed statistics are available using the HTTPS interface.

2.4 Administration

The collector service administration is done using digitally signed configuration pack-
ages.

The collector service provides two interfaces for loading configuration packages:

• Command line interface – the application verifies the signature, validates that the
commands are in line with and match the collector service status. The command
is implemented using a separate utility

• Web interface – sends the configuration package to the command line interface
and returns to the user information on the result of the loading process. If the
loading was successful, the configuration package is implemented automatically
and is based on the same principles

The functions of the web interface are:

16

• Monitoring the status of the collector service microservices

• Managing election lists

• Displaying statistics on the progression of e-voting

• Managing the users of the administration service

• Displaying the collector service administration log

All commands sent to the application are kept – even the ones that were not imple-
mented. Faulty commands (those that cannot be validated) are not kept.

The collector service may perform the following actions automatically:

• Preparing stored votes, logs and settings for backup and archiving them in the
backup service

Administration Service Components

1. The administration web server is an Apache server operating in the www-data
rights of a system user, and its tasks are:

1. Initial servicing of HTTPS requests from users:
1. Proving the reliability of the administration service (TLS certificate)
2. User authentication

2. Serving generated webpages and data files from a data repository
3. Filling a general background data request response with the data of the

logged-in user (WSGI)
4. Initial validation of uploaded commands and sending them to the administra-

tion daemon, and sending the administration daemon’s relevant responses
to the client (WSGI)

2. The administration daemon is a web server operating in the ivxv-admin ad-
min rights of a user account and listening on the local (localhost) interface,
and its tasks are:

1. Validating the commands that are uploaded
2. Directly applying the uploaded commands (user administration)
3. Storing uploaded commands for later application (to apply settings and vot-

ing lists to the service)
4. Proxy the downloading of the ballot box

3. The agent daemon is a web server operating in the ivxv-admin rights of a
user account and its tasks are:

1. Data collection and registration:
1. The status of known microservices
2. Downloading activity monitoring statistics

4. The data repository is a catalogue on the file system, where the administra-
tion service components keep the collected and generated data (for a more
detailed specification, see the annexes to the IVXV collector service
administration guide)

17

Fig. 2.5. Collector service administration service components
18

External components with which the administration service comes into contact:

1. Collector service subservices - installation, configuration and status data col-
lection is done via the agent daemon (SSH connection into the service machine)

2. Monitoring server - downloading general statistics data to display it in the ad-
ministration service

Fig. 2.6. Loading commands into the administration service

2.5 Collector Service Statuses

The status of the collector service reflects the status of all the subservices of the
service, the status of the external services used, and the overall status derived from
the above. The administration service is responsible for identifying the status of the
collector service.

The overall situation statuses are:

19

1. Not installed - the status after the installation of the administration service until
the installation of all subservices

2. Installed - all subservices are installed, technical settings have been applied, as
well as the cryptokeys required for the operation of the service. Election settings
have not been applied (but can be loaded into the administration service)

3. Configured - the collector service has been configured and is operational, it can
be used to conduct voting and issue the ballot box

4. Partial failure - the collector service has been configured and is partially opera-
tional, some subservices are not operational, but it does not hinder the operation
of the collector service

5. Failure - an important node of the collector service is not operational, it is impos-
sible to provide the service as required

Statuses of the Subservices of the Collector Service

Changes in the Collector Service Status

The status of the collector service can be monitored as of the successful installation
of the administration service, the original status is Not installed.

Not installed

The trust root and the technical configuration are applied to the collector service:

1. The settings are loaded into the collector service

2. The subservices specified in the technical configuration are installed

3. The trust root and the technical configuration are applied to the subservices

If the configuration is applied successfully, the new status of the system is installed.

Installed

The collector service settings are applied to all subservices, but the election settings
are not applied. Election settings are loaded into the administration service and applied
to the subservices.

If the election settings are applied successfully, the new system status is configured.

20

Fig. 2.7. Status diagram of the collector service. Statuses according to color: yellow –
being configured, red – failure, green – operational

21

Fig. 2.8. Status diagram of a subservice registered by the administration service. Sta-
tuses according to color: yellow – being configured, red – failure, green – operational

Configured

All subservices of the collector service are configured and operational. The adminis-
tration service has fresh status reports from all subservices. The system can be used
to conduct the voting and issue the ballot box.

If a failure is found in the system, the new status of the system is partial failure.

The system can never go from the status configured back to the statuses not in-
stalled või installed, although if new subservices are added (until they are not in-
stalled/installed), the relevant criteria would be met.

22

Partial Failure

The system is configured and partially operational, some doubled parts of the system
are not operational, but this does not keep the system from functioning.

If the failure worsens to the limit where the system is no longer able to provide the
service, the new status of the system will be failure. Once all failures are eliminated,
the new status of the system will be configured.

Failure

A failure is identified in the configured system that prevents service provision.

Once the failures are eliminated to the point where the system can be used to provide
the service, the new status of the system will be partial failure.

Removed

The service has been removed from the configuration.

23

CHAPTER

THREE

APPLICATIONS

3.1 General Principles

All applications are applications with a command line interface, packaged to function
in the operation system Windows 7 (or newer). The user interfaces of components are
single-language. The components are delivered in Estonian, and can be translated
using a translation file.

The applications are programmed in Java.

Applications communicating with external information systems make maximum use of
the existing interfaces/data structures.

The applications get their input from the application settings and from the file system
files shown in the settings, and save their output into the folder specified by the user in
the file system. The files can also be located on a main memory disk.

Relevant applications support the ElGamal cryptosystem in the multiplicative group
of integers and the P-384 elliptic curve. The decryption proof is implemented on a
protocol based on the Schnorr zero-knowledge proof.

Fig. 3.9. Application support modules

The election interface is unified for applications that allow implementing various elec-
tion types as modules. The functionality of verifying digital signatures is created using
the digidoc4j3 library. The use of support modules is not highlighted separately in the

3 https://github.com/open-eid/digidoc4j

24

https://github.com/open-eid/digidoc4j

diagrams below.

Application Configuration

Applications are configured with either a digitally signed configuration package or with
command line keys. Command line keys do not support entering a configuration with
a hierarchical nature. The settings in a configuration package are specified in YAML:

check:
ballotbox: votes.zip
ballotbox_checksum: votes.zip.sha256sum.bdoc
districts: TESTKOV2017.districts.json
registrationlist: register.zip
registrationlist_checksum: register.zip.sha256sum.bdoc
tskey: ts.pub.key
vlkey: test.gen.pub.key
voterlists:
-
path: 00.TESTKOV2017.gen.voters
signature: 00.TESTKOV2017.gen.voters.signature

-
path: 03.TESTKOV2017.gen.voters
signature: 03.TESTKOV2017.gen.voters.signature

-
path: 06.TESTKOV2017.gen.voters
signature: 06.TESTKOV2017.gen.voters.signature

-
path: 09.TESTKOV2017.gen.voters
signature: 09.TESTKOV2017.gen.voters.signature

election_start: 2017-05-01T12:00:00+03:00
out: out-1

squash:
ballotbox: out-1/bb-1.json
ballotbox_checksum: out-1/bb-1.json.sha256sum.bdoc
districts: TESTKOV2017.districts.json
out: out-2

revoke:
ballotbox: out-2/bb-2.json
ballotbox_checksum: out-2/bb-2.json.sha256sum.bdoc
districts: TESTKOV2017.districts.json
revocationlists:

- 12.TESTKOV2017.gen.revoke.json
- 13.TESTKOV2017.gen.revoke.json
- 14.TESTKOV2017.gen.revoke.json
- 15.TESTKOV2017.gen.revoke.json

out: out-3

25

Input Consistency Check

All applications perform an input consistency check for the configuration depending on
the settings they use:

1. Loading certificate configuration

2. Verifying the digital signature of the configuration

3. Verifying the district list

4. Verifying the consistency of the district list

5. Loading the district list

6. Verifying the list of choices

7. Verifying the consistency of the list of choices

8. Loading the list of choices

9. Verifying the voter lists

10. Verifying the consistency of the voter lists

11. Loading the voter lists

3.2 Key Application

Fig. 3.10. Key application interfaces

26

The key application is an application used to generate vote encryption and decryption
key for each vote, and to count the votes and issue the result.

The key application uses the [DesmedtF89] threshold scheme, which is based on a
trustworthy part distributor and uses the Shamir secret sharing, which is safe in an
information theoretical sense in case of a 𝑡 < 𝑀 party, where M is the threshold.

The key shares are generated in the main memory and saved on a chip card using the
PKCS15 interface.

The key application input for generating the key is:

• The key pair identifier

• The cryptosystem ElGamal specification – the multiplicative group of integers or
the P-384 elliptic curve and key length

• The M-N threshold scheme specification that has to meet the rule 𝑁 >= 2*𝑀−1

• N PKCS15-compatible chip cards

The key application output for generating the key is:

• A self-signed certificate

• N key shares saved on chip cards

• The application’s detailed action log

• The application’s detailed error log

The key application input for counting votes is:

• Mixed votes

• Key pair identifier

• M key shares pursuant to the threshold scheme specification

The key application output for counting votes is:

• The signed voting result

• Invalid vote count

• The decryption proof (protocol based on the Schnorr zero-knowledge proof, re-
ferred to in the contract documents)

• The application’s detailed action log

• The application’s detailed error log

In addition to the interfaces and dependencies defined earlier, the processing applica-
tion uses a third-party library to implement the PKCS15 interface. The specific library
is selected in the design stage.

27

3.3 Processing Application

The processing application is an application used to verify, cancel and anonymize the
votes collected over the voting period, which functions according to section 7.6 of the
General Description.

The processing application input is:

• Electronic votes stored by the collector service

• Timestamps issued by the registration service

• Voter lists

• District list

• Revocation lists

• Restoration lists

The processing application output is:

• The application’s detailed action log

• The application’s detailed error log

• The list of online voters in a PDF format, depending on the processing stage

• The list of online voters in a format that can be processed by a machine, depend-
ing on the processing stage

• Anonymized votes

In addition to the interfaces and dependencies defined earlier, the processing applica-
tion uses a third-party library to implement the functionality of issuing PDF files.

Fig. 3.11. Processing application interfaces

28

Full Processing of Electronic Votes

For the full processing of electronic votes, the processing application compares the
number of votes stored by the collector service to the number of votes stored by the
registration service, verifies that the stored votes comply with the election configura-
tion, identifies the votes to be counted, and anonymizes them for delivery to the key
application.

1. Loading application settings

2. Verifying the digital signatures of electronic votes

3. Verifying the registration service confirmations

4. Verifying the timestamps

5. Identifying the latest valid vote for each voter

6. Issuing an initial PDF list of the people who voted online

7. Verifying the revocation and restoration lists

8. Checking the consistency of revocation and restoration lists

9. Implementing the revocation and restoration lists

10. Generating a list of votes to be mixed, separating ciphertexts from digital signa-
tures

11. Issuing a final list of people who voted online in a machine-readable format

Generating a List of Electronic Voters

1. Loading application settings

2. Verifying the digital signatures of electronic votes

3. Issuing an initial PDF list of the people who voted online

3.4 Audit Application

The audit application (Figure 9) is an application that mathematically verifies that the
vote count is correct, and if mixing is used, that the mixing is also correct.

The audit application input is:

• Anonymized votes

• Mixed votes

• Shuffle proof (Terelius-Wikström, Verificatum)

• Voting result

The audit application output is the application’s detailed action log, which also contains
an assessment on the complete success of the audit. If necessary, the application’s
detailed error log is also issued.

29

Fig. 3.12. Audit application interfaces

30

CHAPTER

FOUR

TECHNOLOGY USED

4.1 Collector Service Programming Language

The core functionality of the collector service is programmed using the Go program-
ming language, which meets the following procurement requirements:

• Static typing

• Automatic memory management

• Open source code compiler

• Concurrency

The collector service administration service is programmed in Python.

4.2 Programming Language of Applications

The applications are programmed in Java, which meets the procurement requirements
regarding the widespread nature and sustainability of the programming language.

4.3 Project Dependencies

The third-party components used in the project together with their motivated usage
need are listed in the tables below. There are separate tables for packaging and oper-
ating the framework as well as developing and testing the framework.

All external libraries used in the IVXV project are available in the ivxv-external.
git repository or on the platform on which the application will be operating.

All components used in the collector service have an open source code.

31

Table 4.1. Third-party components used for the work of the IVXV framework
Name Version License (SPDX) Usage need
Bootstrap4 3.4.1 MIT Design of the user in-

terface of the collec-
tor service adminis-
tration service

Bouncy Castle 1.58 MIT ASN1 handling, sup-
port functions of the
data type BigInteger

Bottle5 0.12.15 MIT Framework for exe-
cuting the collector
service administra-
tion service web
interface

CAL10N 0.7.7 MIT Multilanguage sup-
port, translation file
validation

Digidoc 4j 2.1.0 LGPL-2.1-only BDoc container han-
dling

Digidoc 4j DSS 5.2.d4j.3 LGPL Digidoc 4j depen-
dency

Apache Commons (cli 1.4, codec
1.10, collections4 4.1, io 2.5,
lang3 3.6, logging 1.2, compress
1.3)

•
Apache-2.0 Digidoc 4j and PDF-

Box dependencies

Apache HttpComponents 4.5.3 Apache-2.0 Digidoc 4j depen-
dency

Apache Santuario 2.0.9 Apache-2.0 Digidoc 4j depen-
dency

Google Guava 20.0 Apache-2.0 Digidoc 4j depen-
dency

JDigiDoc 3.12.1 LGPL-2.1-only Digidoc 4j depen-
dency

StaX 1.0-2 Apache-2.0 Digidoc 4j depen-
dency

log4j 1.2.6 Apache-2.0 Digidoc 4j depen-
dency

Woodstox 4.4.1 Apache-2.0 Digidoc 4j depen-
dency

Xalan-Java 2.7.2 Apache-2.0 Digidoc 4j depen-
dency

Xml Apis 1.3.04 Apache-2.0 Digidoc 4j depen-
dency

continues on next page

32

http://getbootstrap.com
https://bottlepy.org/

Table 4.1 – continued from previous page
Name Version License (SPDX) Usage need
Docopt6 0.6.2 MIT Execution of the

command line inter-
face of the collector
management service
utilities

Fasteners7 0.14.1 Apache-2.0 Process locking mod-
ule for collector man-
agement service

etcd8 3.2.26 Apache-2.0 Distributed key value
database used as a
storage service

github.com/golang/protobuf9 1.3.2 BSD-3-Clause etcd client library de-
pendency

Glassfish JAXB 2.3.3 BSD-3-Clause Java XML library
google.golang.org/genproto10 58ce757 Apache-2.0 etcd client library de-

pendency
google.golang.org/grpc11 1.22.1 Apache-2.0 etcd client library de-

pendency
golang.org/x/net12 74dc4d7 BSD-3-Clause etcd client library de-

pendency
golang.org/x/sys13 fc99dfb BSD-3-Clause etcd client library de-

pendency
golang.org/x/text14 0.3.2 BSD-3-Clause etcd client library de-

pendency
Gradle 6.4 Apache-2.0 Java applications

build tool
HAProxy15 2.0.13 GPL-2.0-or-later TCP proxy used as a

proxy service
IvyPot 0.12 Apache-2.0 A Gradle build tool

extension for man-
aging dependencies
and building applica-
tions offline

Jackson 2.8.9 Apache-2.0 Reading and writing
JSON files

jQuery16 3.3.1 MIT User interface of the
collector service ad-
ministration service

Logback 1.2.3 EPL-1.0 or LGPL-
v2.1-only

Logging API SLF4J
implementation

continues on next page

33

http://docopt.org/
https://github.com/harlowja/fasteners
https://coreos.com/etcd
https://github.com/golang/protobuf
https://google.golang.org/genproto
https://google.golang.org/grpc
https://golang.org/x/net
https://golang.org/x/sys
https://golang.org/x/text
http://www.haproxy.org/
https://jquery.org/

Table 4.1 – continued from previous page
Name Version License (SPDX) Usage need
Logback JSON 0.1.5 EPL-1.0 or LGPL-

v2.1-only
Logback logger ex-
tension for compil-
ing log entries in the
JSON schema format
using the Jackson li-
brary

metisMenu17 1.1.3 MIT User interface of the
collector service ad-
ministration service

PDFBox 2.0.8 Apache-2.0 PDF report genera-
tion support for Java
applications

PyYAML18 5.3.1 MIT Collector service
configuration files’
processing support
for the administration
service

Schematics19 2.0.1 BSD-3-Clause Collector service
configuration files’
validation support for
the administration
service

SLF4J 1.7.25 MIT Standard logging API
SnakeYAML 1.18 Apache-2.0 Reading data in the

YAML format
SB Admin 220 3.3.7+1 MIT Design of the user in-

terface of the collec-
tor service adminis-
tration service

4 http://getbootstrap.com
5 https://bottlepy.org/
6 http://docopt.org/
7 https://github.com/harlowja/fasteners
8 https://coreos.com/etcd
9 https://github.com/golang/protobuf

10 https://google.golang.org/genproto
11 https://google.golang.org/grpc
12 https://golang.org/x/net
13 https://golang.org/x/sys
14 https://golang.org/x/text
15 http://www.haproxy.org/
16 https://jquery.org/
17 https://github.com/onokumus/metisMenu
18 http://pyyaml.org/
19 https://github.com/schematics/schematics
20 https://github.com/BlackrockDigital/startbootstrap-sb-admin-2

34

https://github.com/onokumus/metisMenu
http://pyyaml.org/
https://github.com/schematics/schematics
https://github.com/BlackrockDigital/startbootstrap-sb-admin-2

Table 4.2: Third-party components used by the IVXV framework tests
Name Version License Usage need
Hamcrest 1.3 BSD A more readable use of assert-methods in

Java unit tests
JUnit 4.12 EPL-1.0 Java testing framework
JUnit-
Params

1.1.0 Apache-2.0 Test parameterization support

Mockito 2.10.0 MIT Support for mocking the dependencies of
the code being tested

Byte Buddy 1.9.10 Apache-2.0 Mockito dependency
Objenesis 2.6 Apache-2.0 Mockito dependency
libdigidocpp-
tools

3.14.5.1404LGPL-2.1-
or-later

Generating test data

PyTest 6.2.3 MIT Üksuste testimise tugi Pythonile
Requests 2.25.1 Apache 2.0 HTTP päringute moodul Pythoni testidele

Table 4.3: Third-party tools used to develop and/or test the IVXV framework
Name Version License

(SPDX)
Usage need

Behave21 1.2.6 BSD-2-
Clause

Regression test driver (Behavior-driven devel-
opment)

Docker22 18.06 (or
newer)

Apache-
2.0

Environment for conducting regression tests –
software containers

Docker
Com-
pose23

1.28.6 Apache-
2.0

Environment for conducting regression tests –
software container management

Sphinx24 3.4.3 BSD Environment for document generation

21 https://github.com/behave/behave
22 http://www.docker.com/
23 http://www.docker.com/
24 http://www.sphinx-doc.org/

35

https://github.com/behave/behave
http://www.docker.com/
http://www.docker.com/
http://www.docker.com/
http://www.docker.com/
http://www.sphinx-doc.org/

CHAPTER

FIVE

REFERENCES

36

BIBLIOGRAPHY

[DesmedtF89] Desmedt, Y. & Frankel, Y. Brassard, G. (Ed.) Threshold Cryptosystems
Advances in Cryptology - CRYPTO ‘89, 9th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 20-24, 1989,
Proceedings, Springer, 1989, 435, 307-315.

[HMVW16] Sven Heiberg, Tarvi Martens, Priit Vinkel, Jan Willemson, Improving the
verifiability of the Estonian Internet Voting scheme. In Robert Krimmer,
Melanie Volkamer, Jordi Barrat, Josh Benaloh, Nicole Goodman, Peter
Y.A. Ryan, Oliver Spycher, Vanessa Teague, Gregor Wenda (Eds.), The
International Conference on Electronic Voting E-Vote-ID 2016, 18-21 Oc-
tober 2016, Lochau/Bregenz, Austria, TUT Press, pp. 213-229, ISBN 978-
9949-83-022-0

[ProVerif] ProVerif: Cryptographic protocol verifier in the formal model, http://
prosecco.gforge.inria.fr/personal/bblanche/proverif/

[TK2016] Tehniline kirjeldus. Elektroonilise hääletamise infosüsteemi arenduse
hange, Vabariigi Valimiskomisjon, 2016

[ÜK2016] Elektroonilise hääletamise üldraamistik ja selle kasutamine Eesti riiklikel
valimistel. Elektroonilise Hääletamise Komisjon, Tallinn 2016

37

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/

	Contents
	Introduction
	IVXV Concept
	IVXV Cryptographic Protocol
	Notation

	Collector Service
	Microservices
	Proxy Service: Function and Technical Interface
	Choices Service: Function and Technical Interface
	Verification Service: Function and Technical Interface
	Voting Service: Function and Technical Interface
	Storage Service: Function and Technical Interface
	Identification Service: Function and Technical Interface
	Signing Service: Function and Technical Interface
	Application of Collector Service Microservices

	External Services and Extendability
	Registration Service: Function
	Adding Collector Service Extension Modules

	Monitoring
	Logging
	General Statistics
	Detailed Statistics

	Administration
	Administration Service Components

	Collector Service Statuses
	Statuses of the Subservices of the Collector Service
	Changes in the Collector Service Status

	Applications
	General Principles
	Application Configuration
	Input Consistency Check

	Key Application
	Processing Application
	Full Processing of Electronic Votes
	Generating a List of Electronic Voters

	Audit Application

	Technology Used
	Collector Service Programming Language
	Programming Language of Applications
	Project Dependencies

	References
	Bibliography

